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Abstract

Active control of (bending) waves in Timoshenko beams is modeled and tackled. A discussion about the possible

wave solutions for harmonically excited Timoshenko beams and their control by either forces or moment pairs is

presented. It is also shown that the adoption of an extra control load allows to a minimum force wave cancellation

control strategy to be developed with important advantages, when compared to the strict wave cancellation approach.

The approach described in this paper was employed in the analysis of in®nite beams; however, it is directly applicable to

the case of limited beams with the controller blocking the passage from a source region to a region that is to be

shielded. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many practical engineering structures are conceived as assemblies of relatively slender elements that can
be modeled as one-dimensional mechanical waveguides. Beams are important both as fundamental
structural elements and as simple global models for some slender bodies.

Much attention has been devoted to their dynamic behavior. In particular, active control of beam vi-
brations is becoming an important ®eld of research, having in view the possible engineering applications.
Analyzed mainly from the modal point of view, dynamic control can also be handled through the wave
propagation approach. This has special appeal because of its local character and better suitability to
transient control at high modal density ranges. When sources are located far from regions to be protected,
the wave control could be used to block or trap the vibrational energy ¯ow. Some authors have adopted
this approach in recent works (Mace, 1987; Elliot and Billet, 1993; Brennan et al., 1995; Pan and Hansen,
1995; Gardonio and Elliott, 1996; Chen et al., 1997; Hirami, 1997).

Physical models of ¯exural wave propagation in beams are developed in order to implement such a
control. Special attention was devoted to the Euler±Bernoulli beam model, which is adequate to represent a
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fair range of structural elements. Some authors of the likes of Mace (1984) and Mead (1994), dedicated
their e�ort to the wave re¯ection mechanism. Less frequently, the wave control of Timoshenko beams has
also been investigated (Hagedorn and Schmidt, 1989; Tong et al., 1995; Farghali and Gadelrab, 1995;
Houmat, 1995; Karlson, 1996; Lueschen et al., 1996; Corn et al., 1997).

The most common wave control strategy is the wave suppression. Other concepts, such as the maxi-
mization of power absorbed by the control forces or the minimization of the total power supplied to the
beam by the original disturbing loads, have also been proposed. These three strategies are compared by
Brennan et al. (1995) for the Euler±Bernoulli beam model.

In the present work, the Timoshenko beam model is adopted, due to its more complete representation of
the beam behavior, especially at higher frequencies, which are the most important, for example, for
problems in the acoustical range. The wave suppression strategy, as shown in Elliott and Billet (1993), is
addressed due to its performance, straightforward results and low information requirements about the
excitation sources. Some authors indicate the power control strategies as the best ones, mainly from the
results in sound control, but they depend on rich information about the disturbing source, which may not
be available in many cases. Also, one must remember the many practical di�erences between loudspeakers
and force actuators, which justify the search for alternative concepts.

In this work, two actuator array models were developed: one with force actuators and another with pairs
of moment actuators, as used by Gardonio and Elliott (1996). This con®guration is of special interest
because of the recent developments of moment actuators made of piezoceramic materials, as presented by
Gibbs and Fuller (1992) and their similarity to biomechanical, muscular actuators. A simple construction
may adapt a linear actuator to produce a self canceling moment pair, by projecting two apophisae out of the
beam axis (Nagaya, 1995).

While a time domain control scheme, presented by Carvalho (1998), would be directly amenable to a
transient wave control experimental setup with digital signal processing, much insight is gained through the
preliminary frequency domain analysis presented here.

2. Equations of motion

The coupled di�erential equations for small amplitude transverse vibration of a uniform Timoshenko
beam with constant cross-section may be written in the form
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where y is the transversal de¯ection and w is the rotation of the cross-section. E denotes YoungÕs modulus,
G, the shear modulus, I, the area moment of inertia, J, the mass moment of inertia, A, the cross-sectional
area, q, the density and K, the shear factor, which depends on the shape of the beam cross-section. Also, p
and l are, respectively, the external distributed force and moment loads. Fig. 1 shows a (in®nite) Timo-
shenko beam with ¯exural waves generated by a concentrated force load p � f �t�d�xÿ x0� or by a moment
l � M�t�d�xÿ x0�.

The bending moment T and shear force Q transmitted through an arbitrary section of the beam may be
expressed by
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Eqs. (1) and (2) may be combined for y resulting in the single Timoshenko beam dynamic equation

EI
o4y
ox4
ÿ qEI

KG

�
� J

�
o2

ox2

o2y
ot2

� �
� Aq

o2y
ot2
� qJ

KG
o4y
ot4
� ÿ EI

KAG
o2p
ox2
� p � J

KAG
o2p
ot2
� ol

ox
: �5�

For concentrated loads, it is easier to use the load-free equation
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with appropriate jump conditions.

3. Solutions

If a concentrated harmonic load, either force or moment, is applied, at any point, to the (in®nite) beam,
four free ¯exural waves will emanate from this point. Harmonic solutions

y�x; t� � y�x�eixt �7�
are assumed for Eq. (6) yielding

EI
o4y
ox4
� qEI

KG

�
� J

�
x2 o2y

ox2
ÿ Aqx2y � qJ

KG
x4y � 0 �8�

with the general solution

y�x� � A1eg1x � A2eg2x � A3eg3x � A4eg4x; �9�
where gi is found by solving the associated fourth-order characteristic equation
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Fig. 1. Positive- and negative-propagating (or evanescent) waves generated by either a moment or a force in a position x0.
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While solving Eq. (10), two di�erent families of solution occur, depending on the values of a and b,
which combine to give the non-dimensional parameter

R � x2J
AKG

: �13�

For R < 1, one imaginary pair and two real and symmetric roots occur. In this case, the well-known
solution leads to two pairs of propagating and evanescent waves. These solutions have the same nature as
those found for the Euler±Bernoulli model.

If R > 1, then two pairs of imaginary roots appear. The corresponding solutions are two pairs of waves,
propagating at two di�erent speeds, referred to as two di�erent propagation modes. Corn et al. (1997)
describe this behavior in a modal approach. Such a solution has no near ®eld, as can be seen in Figs. 2 and
3.

The case R � 1 is a limiting case, not important for a detail consideration here. It is relevant to point out
that the region R P 1 corresponds to high frequencies, with high bending and low shearing rigidity designs.
Such properties are more easily found in special materials, such as composites, like that studied by Farghaly
and Gadelrab (1995). For example, in a steel beam with the following characteristics: b � 0:1 m, h � 0:35
m, K � 0:75, G � 7:7� 1010 N/m2, q � 7:8� 103 kg/m3, where b is the width and h is the height of the solid
rectangular cross-section, this condition would be reached for 4.28 kHz. For the simulations presented here,
this very sti� beam was chosen.

It must be observed that R � 0 alone does not ensure an approximation between Timoshenko and Euler±
Bernoulli models.

Also interesting to observe is that Eqs. (1) and (2) have a peculiar solution when the product EI becomes
very large when compared with the quantity KAG. In this case, a mode of pure rotation of the beam cross-
section takes place with no transverse displacement. Here, the beam degenerates in a sheaf of frictionless
compressible ®bers, governed by

o2w
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E
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ot2
� l

EI
: �14a�

Fig. 2. Response amplitudes of Timoshenko beams for unit concentrated force loading at x � 0. The wavelength k0 is for R � R0.
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The associated propagating speed cR is (®ber tensile waves)

cR �
����
E
q

s
: �14b�

Another particular situation arises when the bending sti�ness EI is very large, when compared with both
quantities KAG and J. In this case, Eqs. (1) and (2) become uncoupled, and a propagating wave mode of
pure shear of the beam cross-section takes place:
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This equation has an associated propagating speed cs expressed by

cs �
�������
KG
q

s
: �15b�

The solutions (14) and (15) show that at limit conditions, two propagating (not evanescent) modes can
exist together in the general Timoshenko solution.

4. Jump conditions

For an in®nite Timoshenko beam, as shown in Fig. 1, the following matching conditions prevail in the
section where concentrated loads (force f and moment M) are applied:
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Fig. 3. Amplitude response of Timoshenko beams for unit concentrated moment loading at x � 0. The wavelength k0 is for R � R0.

M.O.M. Carvalho, M. Zindeluk / International Journal of Solids and Structures 38 (2001) 1749±1764 1753



where T(Q) is the internal bending moment (shear force) and � (ÿ) means to the right (left) of the cross-
section where the corresponding concentrated load is applied.

By eliminating w and imposing the time harmonic loading, one can ®nally obtain
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On substituting the solution of Eq. (9) in Eq. (17), the resulting system of equations can be written as

�C�l��fAg � fBg: �18�
For a position x � l, the beam (normalized) inverse compliance matrix is
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the amplitude vector is

fAg � fA1 A2 A3 A4 gT; �20�
and the load vector results in
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Then, if a load, either force or moment, is applied at a particular section x � l on a beam, the coe�cients
Ai for the solution in Eq. (9) are obtained from

fAg � �C�l��ÿ1fBg: �22�
Finally, to calculate the e�ect of an array of external loads applied along the length of the beam, the

solution superposition technique will be used as the system is linear.

5. Active control

Flexural propagating wave control by cancellation consists of prescribing a load array (of forces fi or
moments Mi and their application points) that eliminates the propagating disturbance, when it crosses the
array. In this approach, the waves generated by the control loads cancel the incident propagating wave. As
each load of the array generates four ¯exural waves, conditions are included in order to avoid or minimize
side e�ects, which could be considered as a propagating spillover.

Let an external disturbance generate a progressive harmonic wave D�x; t� � Ainei�kxÿxt� with wavenumber
k and frequency x. Then, in this expression, x being imposed, k can be evaluated in correspondence to one
of the roots of Eq. (10), as a function of the beamÕs mechanical properties.

Without loss of generality, let Ain � 1 which, considering the four possible waves in Eq. (9), may be seen
as part of the disturbance amplitude vector:
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fD�x; t�g � f 0 Ain 0 0 gT
ei�kxÿxt� � f 0 1 0 0 gT

ei�kxÿxt�: �23�

5.1. Force array

Considering the control conditions of an in®nite beam through the application of force actuators (Fig.
4), it can be veri®ed that four independent forces are needed to impose the amplitudes of the four outgoing
waves. Calling fAgi as the wave amplitude vector generated by a unit control force applied in x � li, one
gets

fAgi � �C�li��ÿ1fBgi; �24�
where fBgi (see Eq. (21)) is the corresponding load vector applied when x � li. In the case of a control force
array,
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8>><>>:

9>>=>>;: �25�

Then, the control waves generated by the four force array applied in l1; l2; l3 and l4 would be

fAgcontrol � f1fAg1 � f2fAg2 � f3fAg3 � f4fAg4 �
X4

i�1

fifAgi �26a�

or

fAgcontrol �
X4

i�1

fi�C�li��ÿ1fBgi: �26b�

5.2. Cancellation control

In the control strategy based on cancellation criteria, the addition fAgcontrol represents the four outgoing
wave (complex) amplitudes or the amplitude vector generated by the control forces and should cancel the
external disturbance fDg. Four levels of ful®llment may be the following:

1. The positive propagating disturbance wave stops in the control array. In this case, just one control
force is enough but three other progressive and regressive waves will be generated out of the array as side
e�ects. The nature of these waves depends on the value of R.

Fig. 4. Force array applied to an in®nite beam and the waves generated by these forces out of the array. For simplicity, l1 was made

zero.
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2. A pair of propagating waves is canceled in the control array. In this case, two control forces will be
demanded and two other (either evanescent or propagating) waves would be produced out of the array.

3. A pair of propagating waves stops and one of the others, a progressive or regressive (either evanescent
or propagating) wave, would also be canceled. In this case, three control forces will be demanded. This case
is very interesting, having in mind the reduction of sensor contamination by regressive waves.

4. All the waves coming out of the array are canceled by a four force array and no side e�ects will appear.
This complete cancellation control implies

fAgcontrol �
X4

i�1

fifAgi � ÿfDg � f 0 ÿ1 0 0 gT �27�

resulting in

fAg1fAg2fAg3fAg4

� �ff g � �A�ff g � f 0 ÿ1 0 0 gT; �28�
where

ff g � f f1 f2 f3 f4 gT: �29�
Therefore, the control forces { f } can be evaluated by

ff g � �A�ÿ1

0
ÿ1
0
0

8>><>>:
9>>=>>;: �30�

The results of such a complete control scheme applied to the example beam are illustrated ahead, in Fig.
8(d). If less than four forces are applied, i.e., if only a part of the generated waves is controlled, then a
correspondingly reduced number of right-hand side conditions in Eq. (28) can be satis®ed.

In Fig. 5, results for a single force are exempli®ed, and worth noticing is the standing wave pattern
created by the regressive and incident (disturbance) waves. The near ®eld details can also be seen as a
function of the ratio x=k.

Fig. 5. Wave control using a single control force at x � 0. As R increases, the controlled wave di�ers from the Euler±Bernoulli solution.
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The proposed control criterion does not consider any condition for a point inside the array, l1 >
x > l4. This will not be an important restriction if the interval l between the two forces is conveniently
chosen.

In Fig. 6(a), it can be seen how the modulus of the control force gain vector g � jff gj (called simply force
gain) varies as a function of the ratio l=k for a two force array.

A particular control situation arises when R > 1. In this case, a single external force can cause two
di�erent propagating wave disturbances, which can still be controlled with the four force (load) array. Here,
the disturbance would be

fDg � fAin2 Ain1 0 0 gT: �31�
Similar to what occurs for Euler±Bernoulli beams (Brennan et al., 1995) the amplitude of the necessary

control forces increase strongly when the distance between the forces is near an integer number of half-
wavelengths. Fig. 7 shows the control wave behavior for the same beam considered in Fig. 6 for a two force
control.

For the same beam con®guration, if the number of control forces is increased in order to eliminate more
waves generated inside the array, the force gain g will increase, and larger forces would be needed. Fig. 8
shows the four approaches considered before and their controlled response. These results indicate that,
frequently, there is little or no advantage in controlling more than two propagating waves, especially for
waves with small wavelength that have short near®elds (Fig. 6).

5.3. Pairs of moments array

The pair of moments array actuator has a special appeal. It can be easily generated by sandwiches of
piezoelectric materials or laterally o�set linear actuators and does not require a reaction body or skyhook

Fig. 6. Dependence of the modulus of control force gain g as a function of interval between the forces for (a) two forces controlling two

waves, (b) three optimal forces controlling two waves (l3=l2 � 1:2) and (c) four optimal forces controlling two waves (l3=l2 � 1:2 and

l4=l2 � 1:55).
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for actuator anchoring. Fig. 9 shows such a representation. As a matter of fact, the condition of auton-
omous equilibrium is

P
M � 0. An array made of pairs of moments is just a particular and more restrictive

case.
Following the same procedure adopted for the forces, Eq. (24) is still valid. De®ning fBgi as a load

vector due to a unit moment and zero force applied,

Fig. 7. The relative amplitude is plotted as a function of position ratio x=k for di�erent intervals k between the two control forces in the

array (R � 8:7� 10ÿ6).

Fig. 8. Arrays with one to four control forces applied to the same beam considered before. The respective modulus of the force gain g

are (a) for one control force applied, g � 4:25� 107 N/m, (b) for two control forces applied, g � 5:12� 107 N/m, (c) for three control

forces applied, g � 1:04� 108 N/m, and (d) for four control forces applied, g � 2:24� 108 N/m.
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fBgi �
0
0

M=EI� �
0

8>><>>:
9>>=>>;: �32�

Then, the control wave generated by the four pairs of moments array applied in l1, l2, l3 and l4 would be
likewise

fAgcontrol � M1fAg1 �M2fAg2 �M3fAg3 �M4fAg4: �33�
Using the same control criteria as in the force case, the same four levels of ful®llment can be adopted.

For the last and more general one,

fAgcontrol �
X4

i�1

MifAgi � ÿfDg � f 0 ÿ1 0 0 gT: �34�

Writing Eq. (34) in matrix form and considering {D} as a unit vector

fAg1fAg2fAg3fAg4

� �fMg � f 0 ÿ1 0 0 gT
; �35�

where

fMg � fM1 M2 M3 M4 gT �36�

Therefore, the control pairs of moments {M} can be evaluated by

fMg � �A�ÿ1

0
ÿ1
0
0

8>><>>:
9>>=>>;: �37�

In Fig. 10, the results of such a control applied on a beam can be seen.
If less than four control conditions are imposed, i.e., if only a part of the generated waves are controlled,

the number of control moments would be reduced analogously to what happened with force arrays.
As in the force case, the proposed control criterion does not impose any condition for a point inside the

array, l1 < x < l4.
Letting d be the distance between two moments that form a pair, the control of a Timoshenko beam is

plotted in Fig. 11 for various ratios d=k.

Fig. 9. Four pairs of moments array applied to an in®nite beam and the waves generated by these moments out of the array. For

simplicity, in this ®gure, l1 was made zero.
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Another possibility investigated was the condition d > l. The main di�erences among the two situations
arise inside the array. No particular advantage could yet be observed with such an arrangement.

The moduli of the control moments increase when d approaches an integer multiple of k, as shown in
Fig. 12, for any number of pairs of control moments. These controllability results can guide the pairs of
moments array design when su�ciently narrow band disturbances are involved.

Fig. 10. Arrays with one to four pairs of moments applied to the same beam considered before. The respective moment gains are (a) for

one pair of control moments applied, g � 1:736� 109 N, (b) for two pairs of control moments applied, g � 1:227� 109 N, (c) for three

pairs of control moments applied, g � 1:228� 109 N, and (d) for four pairs of control moments applied, g � 1:435� 109 N.

Fig. 11. The control of a Timoshenko beam by two pairs of moments for di�erent ratios d=k. The distance l between two pairs of

moments is ®xed as 0.25k.
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5.4. Minimum force (load) suppression control

In the control strategy adopted in Section 5.2, if less than four control conditions are imposed, only a
part of the generated waves is controlled and the number of control loads would be reduced in the same
proportion. It was also stated that, in many applications, the control of a pair of propagating waves could
su�ce.

A new and convenient strategy now proposed is the minimum force/load suppression control strategy,
exempli®ed with two controlled waves and arrays of three instead of two loads. One additional condition
imposes that the sum of the load moduli be minimal so that the three loads can be evaluated. The problem
with equality constraints can be solved with Lagrangian multipliers. Taking the force array for simplicity,
let F be the function

F � f1 � f �1 � f2 � f �2 � f3 � f �3 ; �38�
where f �i is the complex conjugate of fi. F is to be minimized and submitted to two constraints arising from
Eq. (28):

G1 � A11f1 � A12f2 � A13f3 � 1 � 0; �39�
and

G2 � A21f1 � A22f2 � A23f3 � 0: �40�
De®ning

Hfqg � f1 � f �1 � f2 � f �2 � f3 � f �3 ÿ a1G1 ÿ a2G2; �41�
and imposing the minimum condition

dH
dfqg � f0g; �42�

lends the linear system

Fig. 12. Moment gain as a function of the ratio d=k, for l � 0:2k and R � 0:087: (a) one pair of moments, (b) two pairs of moments, (c)

three pairs of moments, and (d) four pairs of moments.
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�D�fqg � f 0 0 0 ÿ1 0 gT
; �43�

where

�D� �

2 0 0 ÿA11 ÿA21

0 2 0 ÿA12 ÿA22

0 0 2 ÿA13 ÿA23

A11 A12 A13 0 0
A21 A22 A23 0 0

266664
377775 �44�

and

fqg � f f1 f2 f3 a1 a2 gT: �45�
Eq. (43) is then solved to determine the control forces f1, f2 and f3.
Up to this point, the adopted approach assumes a harmonic disturbance with frequency x. The asso-

ciated wavelength depends on this frequency among other physical characteristics (see Eq. (10)). A more
general disturbance has a wider frequency spectrum. Therefore, with the purpose of avoiding the uncon-
trollable condition l=k � 0:5, the array design could be arranged in such a way that the interval, l, between
two control loads would not be ®xed.

In other words, the three loads can be arranged to avoid the nodeÕs neighborhood at any frequency in a
wider spectrum. In this way, the control will be e�ective in a wider range of frequencies. In fact, as shown in
Fig. 6(b), the modulus of the control force gain is very large only when both intervals between the loads
approach an integer multiple of the half-wavelength of the disturbance propagating wave. This strategy can
be extended to more than three force array. Fig. 6(c) shows the gain modulus for a four force array
controlling two waves. Fig. 13 compares the two force suppression control with the minimum force sup-
pression control for three and four control force array. In all the three cases, just two propagating waves are
controlled.

Fig. 13. Comparison between two strategies applied to the same beam of Figs. 6 and 7 with l=k � 0:45 (a) two forces suppression

control, (b) minimum force suppression control with three control forces (l3=l2 � 1:2), (c) minimum force suppression control with

four control forces (l3=l2 � 1:2 and l4=l2 � 1:55).
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This control strategy can be applied in a similar way to any situation where the number of loads is
greater than that of the controlled waves, but three loads and two controlled waves seam to be the most
advantageous one. The same approach with pairs of moments, instead of force, shows similar good results.

6. Conclusions

Timoshenko beam equation has been reviewed, and its wave solution for an in®nite beam forced by a
concentrated applied load was obtained and analyzed. The active control by a classical wave suppression
strategy was implemented for two kinds of loads: force and pair of moments. A minimum load strategy is
proposed, with the number of control loads exceeding the number of controlled waves. This control strategy
needs no information about the disturbance source positions or about the transfer receptance between
these points and the control load array as it is needed in the power-based strategies (Brennan et al., 1995).
In practical engineering projects, these data are not always available. The disturbances are not always
concentrated and often come from another structure.

Minimum force suppression control strategy (with three or more loads to control two waves) has been
developed and presented a very good performance in the active control of a Timoshenko beam, as com-
pared with standard suppression strategy. This advantage is specially important when the excitation dis-
turbances have a wide frequency spectrum. The new strategy proposed can potentially result in smaller
actuators, although in greater number.

In practical applications, due to the usually low e�ciency and highly nonlinear behavior of exciters, the
gross power demanded by the control is roughly proportional to the force (loads) required and not to the
net power demanded. Thus, minimum force suppression control strategy may also lead to small gross
power requirements, although the net power needed by this strategy could be quite di�erent from that of
minimum power strategy.

When compared with the power-based strategies, the minimum load suppression control strategy pro-
posed has a local approach that does not need to take account of the beam structure, except between the
sensors and the load array.

However, stated here for the in®nite beam, the approach can be readily applied to ®nite lengths. The
same load array may simultaneously control waves propagating in both directions, provided they are
adequately measured by sensor arrays.
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